Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

M El-Shennawy

Taif University, Saudi Arabia

Title: Effect of titanium dioxide nano particles incorporation on mechanical and physical properties on two different types of acrylic resin denture

Biography

Biography: M El-Shennawy

Abstract

The aim of this study is to clarify the effect of different concentrations of titanium dioxide nanoparticles (Nps) on the properties of two types of heat polymerized acrylic resin. The tested parameters were flexural strength, impact strength, and microhardness. The two types of acrylic resin used in this study were conventional unmodified (Implacryl, Vertex) and high impact heat polymerized acrylic resin (Vertex-Dental, Netherlands). Both types of acrylic resin were modified by using 1% and 5% TiO2 Nps powder. Specimen's dimensions were prepared according to the American Dental Association Specification No. 12. Three types of specimens were prepared; 1) flexural strength specimens 2) impact strength test specimens, 3) microhardness specimens. For each test 6 groups were prepared (each group containing 5 samples). Thirty specimens were prepared in each of the three tests, amounting to total number of 90 specimens. Mechanical properties such as flexural strength (FS), impact strength and microhardness of the above mentioned specimens were determined using universal testing machine, Izod pendulum impact testing machine and Vickers microhardness tester, respectively. ISO Specification No. 1567 was followed in microhardness test. The data was collected and statistically analyzed. Flexural strength considerably decreased by increasing TiO2 concentration in both types of acrylic resin. Impact strength of the conventional acrylic resin modified by 1% of additives significantly increased. The microhardness is significantly increased by addition of 5% of TiO2 Nps. The incorporation of TiO2 nanoparticles into acrylic resins can adversely affect its flexural strength. Meanwhile, the impact strength can be modified by small percentage of additives (abt. 1%). This effect is directly correlated with the concentration of nanoparticles. On the other hand, concentrations of TiO2 Nps (abt. 5%) positively affect the microhardness of both types of acrylic resin used in the present study.